
Exploring Adaptive Learning Methods for Convex
Optimization

Bhavdeep Sethi
School of Engineering and

Applied Sciences
Columbia University

Email: bas2226@columbia.edu

Rhea Goel
School of Engineering and

Applied Sciences
Columbia University

Email: rg2936@columbia.edu

Abstract—This paper explores various adaptive learning tech-
niques as an alternative to the standard gradient descent ap-
proach for convex optimization problems. We establish the merits
of adaptive learning rates over fixed learning rates by implement-
ing several techniques such as Momentun, Nestorov’s Accelerated
Gradient, AdaGrad, and AdaDelta on different datasets including
Digits (digit image data for OCR task), 20newsgroup (document
collection) and Labeled Faces in the Wild (LFW) (face image
data). Comparing the accuracies with the baseline Stochastic
gradient descent, we conclude that all adaptive learning tech-
niques perform considerably better than SGD for all the datasets
experimented on.

Keywords—Adaptive learning, AdaGrad, AdaDelta, Momentum.

I. INTRODUCTION

Most machine learning models employ convex optimization
methods for training. For instance, the classic artificial neural
network uses Stochastic Gradient Descent (SGD) for training.
However, it faces a serious demerit that it is highly sensitive to
the value of a fixed learning rate. The learning rate is typically
set experimentally, using a tuning procedure in which the
highest possible learning rate (such that no divergence is seen,
and the convergence is also reasonably fast) is hand picked.
This renders determining a good learning rate more of an art
than science for many problems. [1]

In addition, we know that the eigenvalues of the Hessian
matrix, that captures second order differential information
about the objective function, describe the steepness of the
curve. Higher the eigenvalues, steeper is the curve and we
require smaller values of learning rate. In the scenario where
we have a fixed learning rate, the optimum value that learns
all parameters reasonably well would be the inverse Hessian.
However, computing the inverse of the Hessian matrix is
computationally intensive. Some adaptive learning techniques
provide a good approximation of the Hessian, thereby allowing
Stochastic Gradient Descent to exhibit fast convergence as well
as a high success rate.

In the following sections we will discuss the most recent
work going on in the field, followed by detailed explanation
of how some of these techniques work. Next, we present our
experiments and share some key findings/insights 1. Finally, we
conclude about the performance of various adaptive learning

1Source Code: https://github.com/BhavdeepSethi/AMLProj.git

techniques and discuss some limitations, omissions and future
scope of our work.

II. RELATED WORK

There is no dearth of alternatives for vanilla Stochastic
Gradient Descent that make for faster learning algorithms for
neural networks. Back-propagation is itself a slow learning
algorithm, and can do worse for a poor parameter selection.
Using non-linear optimization techniques helps accelerate the
training method. Since authors usually compare their new
algorithms with the standard back-propagation, they always
report a substantial improvement. [2]

However, different learning methods may perform differ-
ently for different learning tasks. It is always possible to
fool the best method with a suitable learning task, or make
it perform considerably better than the rest. It is a rather
surprising fact that standard online back-propagation performs
better than many fast learning algorithms as soon as the
learning task achieves a realistic level of complexity and when
the size of the training set goes beyond a critical threshold. [3]

Among the many algorithms proposed for faster learning
methods, there are some that try to adapt the networking
topology. However, we restrict our study to the problem of
determining the network parameters, for networks with a fixed
topology.

There are many modifications to the gradient descent
algorithms, and the most powerful one happens to be the appli-
cation of the Newton method, which requires the computation
of the Hessian matrix. Given the cost of that operation for
large models, Becker and LecCun [4] proposed a diagonal
approximation to the Hessian. Also, a recent method by Schaul
et al. [5] incorporating the diagonal Hessian with AdaGrad-
like terms has been introduced to alleviate the need for hand
specified learning rates.

In addition, some heuristic approaches try to slow down
progress near local minima in the cost surface. This can be
done by manually decreasing the learning rate when the vali-
dation accuracy plateaus, or automatically anneal the learning
rate based on how many epochs through the data have been
done. [6]

To lay out the complete landscape, there are a few very
recent methods coming up in the field that we did not explore
in our experiments, but are likely to perform better than most



Fig. 1: Long Narrow Valley function (a). Stochastic Gradient
Descent (b). Momentum

methods in several cases. One of these techniques is AdaSecant
[7], which utilizes curvature information estimated from the
local statistics of the stochastic first order gradients. They
also propose a new variance reduction technique which au-
tomatically reduces the variance of noise in the local gradient
estimates to speed up the convergence. Another is RMSProp, in
which the authors try to exploit the presence of negative eigen-
values of the Hessian to help us design better suited adaptive
learning rate schemes, i.e., diagonal preconditioners.[8] They
show that the optimal preconditioner is based on taking the
absolute value of the Hessian’s eigenvalues.

Apart from modifying the global learning rate (which is
same across all dimensions of the parameters) there has been
extensive research into per-dimension learning rate as well. We
will explore some of these methods in our study.

III. STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent (SGD) is the most commonly
used method for training a wide array of machine learning
models such as regression models, Support Vector Machines,
graphical models etc. It is an optimization technique to mini-
mize an objective function written as a sum of differentiable
functions. Used in conjunction with the Back propagation
algorithm, SGD is used for training artificial neural networks.

Gradient descent algorithm can be implemented in the
batch mode, online mode or using mini-batches. In the batch
mode, each update is made by running through all the data
samples whereas in the online approach, an update is made
for every sample that is misclassified by the current model.
In our experiments, we use a compromise between the batch
and online mode, employing mini-batches (batches containing
more than one sample, but not the entire sample set).

The main idea behind SGD is to update a set of parameters
in an iterative manner to minimize an error function. In each
update, the parameter is reduced by the gradient of the loss
function, scaled by η, the learning rate. The update rule is
given by:

θt+1 = θt − η5 L(θt)

The learning rate indicates the step size in the search
process. If the learning rate is set to a very low value, the
algorithm makes only very little progress in each iteration and

Fig. 2: (Top) Classical Momentum (Bottom) Nesterov’s Ac-
celerated Gradient

Fig. 3: Images from Duchi et al. ISMP 2012 slides

hence converges slowly. If it is set too high, each iteration
might overshoot the optimum value and we observe diver-
gence. This high sensitivity to the value of the learning rate
is one limitation of Stochastic Gradient descent. Next, we will
see simple modifications to SGD, using adaptive learning rates.

IV. ADAPTIVE LEARNING TECHNIQUES

A. Momentum

The simplest extension to SGD that has been used suc-
cessfully for many years now is momentum [9]. In SGD, the
gradient 5L(θt) may change very rapidly due to the fact that
we’re computing the gradient at different data samples. Hence,
following the gradient direction at every step (as in SGD) can
possibly lead to several oscillations in the search process. Mo-
mentum partially solves this issue by re-utilizing the previous
gradient value, scaled by a momentum hyperparameter. The
update rule is given by:

νt+1 = µνt + η5 L(θt)

θt+1 = θt + νt+1



where µ ∈ [0, 1] is the momentum parameter, L(θt) is the
objective function to minimize and 5L(θt) is the gradient of
the function at θt

Instead of following the direction indicated by the current
gradient, a weighted average of the previous gradient direction
and the current gradient direction is computed. The main idea
behind momentum is to accelerate progress along dimensions
in which gradient consistently points in the same direction
and to slow progress along dimensions where the sign of the
gradient continues to change. This is done by keeping track of
past parameter updates with an exponential decay.

Consider a cost surface like the long narrow valley func-
tion. A fixed learning rate might cause the algorithm to
oscillate several times before reaching the optimum minimum
value. Momentum essentially tamps down these oscillations
by correcting the direction of movement chosen at every step
(by utilizing historical information) and reaches the bottom of
the valley sooner. This is visualized reasonably well in Figure
1.[10]

The desired procedure in this case would be to orient
the search towards the center of the valley, but the form of
the error function is such that the gradient does not point in
this direction. Theoretically, the introduction of the momentum
term should provide the search process with a kind of inertia
and could help avoid excessive oscillations in narrow valleys
of the error function, thereby accelerating convergence to a
minimum of the error function.

B. Nestorov’s Accelerated Gradient

A slight modification to Momentum results in another
approach called Nestorov’s Accelerated Gradient (NAG). It
has been the subject of much recent attention by the convex
optimization community. Though seen as different from mo-
mentum, the update rules for both are very similar to each
other. The update rule of NAG is given by:

νt+1 = µνt + η5 L(θt + µνt)

θt+1 = θt + νt+1

The update rule of NAG differs with that of momentum
only in the precise update of the velocity vector ν. While
momentum computes the gradient update from the current po-
sition θt, NAG first performs a partial update to θt, computing
θt + µνt, which is similar to θt+1, but missing the as yet
unknown correction. This benign-looking difference seems to
allow NAG to change ν in a quicker and more responsive way,
letting it behave more stably than classical momentum in many
situations, especially for higher values of µ

Consider the scenario in Figure 2.[11], where the an update
based on the previous gradient leads to an undesirable increase
in the value of the objective function. In NAG, the gradient
correction to the velocity vector at the new position θt + µνt
is computed, and if it indeed was a poor update, the gradient
at the new position will point back towards θt much more
strongly. So, NAG essentially performs a simple gradient
descent and ’jitters’ away slightly in the direction of the
previous gradient for timely correction of updates.

Fig. 4: Cost Function Value for 50 epochs, Momentum

TABLE I: Error vs µ (Momentum)

µ Train Error Validation Error Test Error
0.0 0.043692 0.075329 0.082342
0.9 0.000000 0.050329 0.038385

0.99 0.000000 0.034079 0.023958
0.999 0.000000 0.036250 0.043419

C. AdaGrad

AdaGrad was introduced by John Duchi, Eden Hazan and
Yoram Singer in [12]. The primary motivation behind AdaGrad
is whether all features should share the same learning rate.

Consider the Fig. 3. In standard Text Classification tasks,
infrequent words like ”Xerox” are infrequent yet very infor-
mative and discriminative. The informativeness of these rare
features is the reason functions like TF-IDF are widely used.
In most real life applications, the input instances are of very
high dimensions, but many features are irrelevant.[13]

AdaGrad incorporates knowledge of the geometry of the
past observations to provide a feature-specific adaptive learning
rate. AdaGrad alters Stochastic Gradient Descent update so
that frequently occurring features in the gradients get small
learning rates and infrequent features get higher ones. As
Duchi et al. put it, the learner learns slowly from frequent
features but pays attention to rare but informative features.[14]
Additionally, AdaGrad is an online learning algorithm with
asymptotically sublinear regret.

The update rule of AdaGrad is given by:

gt+1 = gt +5L(θt)2

θt+1 = θt −
η5 L(θt)√
gt+1 + ε

From the update rule, we notice that, each feature dimension
has it’s own learning rate and it

• Adapts with t

• Considers geometry of past observation

• η determines rate first time the feature is encountered.

While there is a global learning rate, each dimension has
its own learning rate. Since this dynamic rate is inversely
proportional to the gradient magnitudes, large gradients have
smaller learning rates and small gradients have large learning



Fig. 5: Train, Validation, Test Error for different techniques for Digit Classification Task

TABLE II: Error vs µ (NAG)

µ Train Error Validation Error Test Error
0.0 0.043692 0.075329 0.082342
0.9 0.000000 0.050329 0.038940

0.99 0.000000 0.036579 0.022239
0.999 0.017915 0.050000 0.047864

TABLE III: Error vs ε (AdaGrad)

ε Train Error Validation Error Test Error

1e−2 0.011385 0.055329 0.044496
1e−4 0.004154 0.046579 0.035034
1e−6 0.004154 0.046579 0.031145
1e−81e−81e−8 0.004000 0.045329 0.030590

rates. Thus, the progress along each dimension evens out over
time. This is really useful for training deep neural networks
since scale of gradient in each layer is different by several
orders of magnitude. Also, the accumulation of gradient in the
denominator has the same effect as annealing, i.e. having the
learning rate decay over time.

D. AdaDelta

AdaDelta was proposed by Matthew Zeiler in [1] in order
to improve upon two main drawbacks of AdaGrad:

• Since each term in the update is positive, the ac-
cumulation of squared gradient in the denominator

continues to decrease the learning rate on each di-
mension throughout training, eventually becoming in-
finitesimally small and thus stops training completely
after running for a long time.

• The magnitudes of gradients are factored out in Ada-
Grad. Thus, it can be sensitive to initial conditions of
the parameters and the corresponding gradients. The
learning rates will be low if the initial gradients are
large. This can be avoided by increasing the global
learning rate. This makes AdaGrad method sensitive
to the choice of global learning rate.

AdaDelta dynamically adapts over time using only first
order information and has minimal computational overhead
beyond vanilla stochastic gradient descent.

The AdaDelta update rule is given by:

gt+1 = γgt + (1− γ)5 L(θt)
2

νt+1 = −
√
xt + ε√
gt+1 + ε

5 L(θt)

xt+1 = γxt + (1− γ)νt+1
2

θt+1 = θt + νt+1

We notice that,

• Just like Stochastic Gradient Descent, the negative gra-
dient direction for the current iteration gt is followed.



• Just like Momentum, the numerator acts like an ac-
celeration term, accumulating previous gradients over
a window of time.

• Just like AdaGrad, the denominator helps to even out
the progress made in each dimension.

• Finally, AdaDelta relates to Schaul et al.s in that
some approximation to the Hessian is made, but by
leveraging information from past updates, it costs only
one gradient computation per iteration.

In AdaDelta, we use a window w (instead of size t,
where t is the current iteration as in AdaGrad) to ensure
that the denominator cannot accumulate to infinity and instead
becomes a local estimate using recent gradients. This ensures
learning continue even after many iterations. To avoid the
inefficiency of storing w previous squared gradients, AdaDelta
implements the accumulation as an exponentially decaying
average of the squared gradients.

Thus, some of the benefits of AdaDelta are:

• Manual setting of a global learning rate is not required

• It is Insensitive to hyper-parameters

• We get dynamic learning rate for each dimension

• It requires minimal computation over standard gradi-
ent descent

• It is quite robust to gradient magnitude, noise and
choice of architecture

• It is applicable in both local and distributed environ-
ments

Thus, AdaDelta is a robust learning method that can be applied
to variety of domains.

V. EXPERIMENTAL SETUP

A. Data Sets

We evaluate the various learning methods on the following
data sets:

• The first data set is sample of 1797 8x8 images of
digits. There are about 180 samples for each class
(0-9). The dataset is nudged to produces a dataset 5
times bigger than the original one, by moving the 8x8
images around by 1px to left, right, down, up.

• The second set is Labeled Faces in the Wild (LFW)
people dataset. The dataset is collection of JPEG
pictures of famous people collected on the internet.
Each image has name of the person as label in the
training data. We perform a Face Recognition task
here. Were filtering the data so that each class has at
least 50 instances. We run our experiments on 1560
samples, with 12 classes.

• The third set is 20newsGroup data which is a standard
dataset for document classification. It is the biggest
dataset that we’re running our experiments on. The
training data consists of 11,314 documents with total
of 20 distinct classes. We use TF-IDF representation

TABLE IV: Test error for ε and γ (AdaDelta)

γ = 0.9 γ = 0.99 γ = 0.999γ = 0.999γ = 0.999

ε = 1e−2 0.028368 0.026718 0.028368
ε = 1e−4 0.030034 0.031701 0.026128
ε = 1e−6 0.026701 0.027257 0.026701
ε = 1e−8ε = 1e−8ε = 1e−8 0.037274 0.027257 0.025590

TABLE V: Test error after 50 epochs (Digit)

Train Error Validation Error Test Error
SGD 0.043692 0.075329 0.082342

Momentum 0.000000 0.050329 0.038385
NAG 0.000000 0.050329 0.038940

AdaGrad 0.004000 0.045329 0.030590
AdaDelta 0.000000 0.034079 0.025590

of the text as features and limit the number to 10000
features for our experiments. The test data consists of
7,532 documents

The validation set for all the above sets is always 10% of
the training data. All the above data sets are available from
the scikit-learn python module.

B. Architecture & Framework

We’re running the experiment using Deep Neural Nets with
one hidden layer. The hidden layer consists of 200 neurons
and uses Rectified Linear Unit as the activation function.
The output layer uses Logistic Regression with Negative Log
Likelihood as the loss function. The prediction is made using
arg max over the Softmax function. L1 regularizer co-efficient
used is 0.0, while the L2 regularizer r co-efficient is inverse of
the size of the training data. We’ve written the code in Theano
so that it can be run on GPU as well.

C. Machine

We’re running the experiments on Amazon EC2 instances.
The configuration of the machine is: g2.2xlarge (26 ECUs, 8
vCPUs, 2.6 GHz, Intel Xeon E5-2670, 15 GiB memory, 1 x
60 GiB Storage Capacity)

TABLE VI: Test error after 50 epochs (LFW dataset)

Train Error Validation Error Test Error
SGD 0.017500 0.270000 0.259167

Momentum 0.000000 0.240000 0.231667
NAG 0.000000 0.265000 0.229167

AdaGrad 0.000000 0.225000 0.179167
AdaDelta 0.000000 0.220000 0.184167

TABLE VII: Test error after 50 epochs (20 Newsgroup)

Train Error Validation Error Test Error
SGD 0.798577 0.841146 0.831365

Momentum 0.103080 0.163021 0.230428
NAG 0.102099 0.163021 0.231480

AdaGrad 0.000294 0.077500 0.167352
AdaDelta 0.000294 0.099479 0.189260



Fig. 6: Train, Validation, Test Error for different techniques for Labeled Faces Dataset

VI. RESULTS

This section will summarize the key findings of all methods
that we implement on different datasets. We present the results
of SGD, Momentum, NAG, AdaGrad and AdaDelta for each of
the three datasets described above. The typical steps followed
for our experiments with each dataset are as follows: First,
we empirically determine the optimal value of any hyper-
parameters used by a technique. We then use the best hyper-
parameter setting of each method to compare their performance
on the dataset in question.

A. Digit Classification

• Finding best value of µ for Momentum

We perform the classification task using Momentum
alone, for 50 epochs, η = 0.01 and vary the value of
µ within the range 0.900 to 0.999. (See Table I)
We see that µ = 0.99 achieves the lowest test error
for η = 0.01. However, we see in Figure 4 that for
µ = 0.99, the value of the objective function varies
wildly in the initial epochs, whereas µ = 0.9 performs
in a much more stable manner. Hence, we use the
latter parameter setting to compare momentum with
other techniques (even though the former setting gives
slightly better test error).

• Finding best value of µ for NAG

We identify the best hyper-parameter value for NAG
as for momentum, by varying µ from 0.9 to 0.999 and

learning over 50 epochs with a step size of 0.01. (See
Table II)
We see that µ = 0.99 achieves the lowest test error for
NAG (similar to Momentum, as expected) η = 0.01.
As in the case of momentum, severe oscillations in
the search process were observed for µ = 0.99, and
hence, Tµ = 0.9 will be used in further eperiments.

• Finding best ε for AdaGrad

Fixing the learning rate η = 0.01, we vary ε from 0.1
to 0.001 and obtain the results as in Table III.
We find that ε = 1e−8 achieves the lowest test error
and hence, will be used for experiments hereon.

• Finding best combination of ε and γ for AdaDelta

We employ grid search to find the least error-inducing
combination of the hyper-parameters ε and γ using
AdaDelta. Test error results obtained are presented in
Table IV.
The best combination of hyper-parameters that gives
the least error is ε = 1e−8 and γ = 0.999.

• We now implement all five techniques for the digit
classification task for 50 epochs each, at η = 0.01 and
the best hyper-parameter settings as inferred above.
Training, validation and test error have been plotted
in Figure 5 and the results have been summarized in
Table V.



Fig. 7: Train, Validation, Test Error for different techniques for 20 Newsgroup data

It is clear from the plot that SGD performs considerably
poor as compared to all the adaptive learning techniques, fol-
lowed by Momentum and NAG, where they behave similarly
except that NAG tends to be more stable. Next, we see that
AdaGrad attains an even lower value of the objective func-
tion, thereby giving lower test error rate. However, AdaDelta
outperforms AdaGrad as well and hence proves to be the
best adaptive learning technique (for the selected parameter
settings) for the digit classification task performed on the
chosen dataset.

B. Labeled Faces in the Wild

As for digit classification, we empirically determine the
best parameter settings for each of the techniques and used
those values for performing further experiments. We obtained
similar results as for the digit classification task; we omit the
details for brevity. As per our experiments, we will use µ =
0.9 for momentum and NAG, ε = 1e−8 for AdaGrad and
AdaDelta, and γ = 0.999 for AdaDelta.

We now implement all five techniques for the labeled faces
classification task for 50 epochs each, at η = 0.01 and the best
hyper-parameter settings as inferred above. Training, validation
and test error have been plotted in Figure 6 and the results have
been summarized in Table VI.

C. Document Classification

As for digit and labelled faces dataset, we empirically
determine the best parameter settings for each of the techniques

and used those values for performing further experiments.
Again, we omit the details for brevity. As per our experiments,
we will use µ = 0.9 for momentum and NAG, ε = 1e−8 for
AdaGrad and AdaDelta, and γ = 0.999 for AdaDelta.

We now implement all five techniques for the document
classification task for 50 epochs each, at η = 0.01 and the best
hyper-parameter settings as inferred above. Training, validation
and test error have been plotted in Figure 7 and the results have
been summarized in Table VII.

VII. CONCLUSION

In this study we explore some adaptive learning tech-
niques namely Momentum, Nestorov’s Accelerated Gradient,
AdaGrad and AdaDelta and appreciate their possible advan-
tages over the vanilla Stochastic Gradient Descent in various
scenarios. We compare their performance on three different
datasets, and conclude that Momentum and NAG perform
considerably better than SGD. Furthermore, AdaDelta proves
better than AdaGrad for Digit classification task whereas
AdaGrad outperforms it for LFW and 20 Newsgroup data.
Nevertheless, the two techniques exhibit close behaviour and
each may prove very beneficial over all the other competitors.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Prof. Tony Jebara for his
valuable advice and continuous guidance during our study. We
would also like to express our gratitude towards the TAs Enze
Li, Kui Tang, Sami Mourad for helping us all through the
project.



IX. DISCUSSION AND SCOPE

The experiments we ran were limited to the adaptive
learning methods Momentum, NAG, AdaGrad and AdaDelta.
There has been a lot of research work in this field. Some of
the new methods to be explored are AdaSecant (Dec, 2014) ,
RMSProp & ESGD (Feb, 2015).

We have restricted the experiments to a fixed network
topology. One could also experiment with different architec-
tures to see if it affects the performance of these learning
techniques.

Additionally, the experiments can be performed on differ-
ent domains like speech recognition, time series analysis and
so on.

REFERENCES

[1] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[2] Lutz Prechelt. A quantitative study of experimental evaluations of
neural network learning algorithms: Current research practice. Neural
Networks, 9(3):457–462, 1996.

[3] W. Schiffmann, M. Joost, and R. Werner. Comparison of optimized
backpropagation algorithms. In Proc. of ESANN’93, Brussels, pages
97–104, 1993.

[4] Sue Becker and Yann Le Cun. Improving the convergence of back-
propagation learning with second order methods. In Proceedings of the
1988 connectionist models summer school, pages 29–37. San Matteo,
CA: Morgan Kaufmann, 1988.

[5] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning
rates. arXiv preprint arXiv:1206.1106, 2012.

[6] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

[7] Çaglar Gülçehre and Yoshua Bengio. ADASECANT: robust adaptive
secant method for stochastic gradient. CoRR, abs/1412.7419, 2014.

[8] Yann N. Dauphin, Harm de Vries, Junyoung Chung, and Yoshua
Bengio. Rmsprop and equilibrated adaptive learning rates for non-
convex optimization. CoRR, abs/1502.04390, 2015.

[9] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Cognitive modeling, 5,
1988.

[10] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-
Verlag New York, Inc., New York, NY, USA, 1996.

[11] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In
Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 1139–1147, 2013.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. The Journal
of Machine Learning Research, 12:2121–2159, 2011.

[13] Emily Fox. Logistic SGD and AdaGrad, 2013. Class lecture for CSE
547: Machine Learning for Big Data, University of Washington.

[14] Chris Dyer. Notes on adagrad. Class lecture notes, Carnegie Mellon
University.


