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Abstract

The purpose of this document is to gain a deeper insight into neural net-
works – what are the parameters, how sensitive is the learning to different
parameters, different ways of optimizations, etc. We run multiple experi-
ments and document the result.

1 Basic Structure and Terminology

A Multi-Layer Neural Network (or Multi-Layer Perceptron or Artificial Neural
Network - ANN) is a network model consisting of a directed graph with multiple
layers that map set of input data into relevant outputs. Figure 1 shows a graphical
representation of a neural network with one hidden layer.[1] Such a network can
be represented as:

f : RD → RO, where D denotes size of the input vector x and O denotes size of
the output vector f(x).

Figure 1: Neural Network with 1 hidden layer
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Now,

f(x) = A(0)(W (0) · h(x) + b(0))

h(x) = A(1)(W (1) · x+ b(1))

b(1) : k-vector (called hidden units offsets or hidden unit bi-
ases)
W (1) : k × d matrix (called input-to-hidden weights)
b(0) : m-vector (called output units offset or output units bi-
ases)
W (0) : m× h matrix (called hidden-to-output weights)

A(0),A(1) are activation functions of the output layer and hidden layer respectively.
h(x) represents output of the hidden layer. The elements of the hidden layer are
called hidden units.

As we see, the output of the hidden layer is fed as input to the output layer. We can
stack multiple such hidden layers to create a deep neural network. Each of these
layers may have a different dimension k.

Logistic regression is a special case of the MLP with no hidden layer (the input
is directly connected to the output). Neural networks with more than two hidden
layers are generally called deep neural networks.

Using the above architecture, we’d like to find an algorithm which will let us find
the weights and biases such that output from the network f(x) approximates the
actual output for the training data x. To quantify this, we define a cost (loss or
objective) function C. One example of such a cost function is the mean squared
error (MSE):

C(W, b) = 1
2∗n

∑
x
‖f(x)− y‖2

where, n is the number of training examples, y is the actual output from the training
data.

We notice that C(W, b) is a non-negative function. Furthermore, when f(x) ≈ y
for all training data, then C(W, b) ≈ 0. Inversely, if the predicted f(x) is very
far apart from actual output y, then C(W, b) would be large. Thus, our task is to
find W and b such that we minimize the cost function. We do this using algorithm
called gradient descent (GD).

The main idea behind GD is to update a set of parameters in an iterative manner
to minimize the error/cost function. In each update, the parameter is reduced by
the gradient of the cost function, scaled by η, the learning rate. The update rule is
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given by:

θt+1 = θt − η5 L(θt)

Gradient descent algorithm can be implemented in the batch mode, online mode or
using mini-batches. In the batch mode, each update is made by running through all
the data samples whereas in the online approach, an update is made for every sam-
ple that is misclassified by the current model. The batch mode has the disadvantage
of ending up in the local minima. Also, when the number of training examples are
high, the learning can be really slow. On the other hand, the online mode can get af-
fected a lot because of noisy data. The standard online back-propagation performs
better than many fast learning algorithms as soon as the learning task achieves a
realistic level of complexity and when the size of the training set goes beyond a
critical threshold. [2]

A compromise between the batch and online mode is the mini-batch gradient de-
scent such that batches containing more than one sample, but not the entire sample
set.

The training set is used for minibatch stochastic gradient descent on the differential
of the objective function. As we perform this gradient descent, we periodically
calculate the validation set to see how our model is doing on the real objective
function. When we see a good model on the validation set, we save it and check it
on the test set.

2 Learning Basic Functions

We start the experiments by running the code 1 on syntenthic data set which uni-
formly varies from -6 to 6. The data set consists of 1000 training, 100 validation
and 100 test examples.

2.1 Learning y = x

For y = x dataset, we run the experiment using the following configuration:

• 1 Hidden Layer with 1 hidden unit and no activation function

• Logistic Regression as the Output layer
1Source Code: https://github.com/BhavdeepSethi/DeepLearning.git
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Figure 2: Graphs for y = x data

• Cost C(W, b): MSE

• W and b initiallized randomly

• η = 0.01

• batch size = 10

• L1 and L2 regularizers as 0.0

Here are the final parameter values that we observe:

b(1) : [0.25452751]
W (1) : [-1.07836336]
b(0) : [0.23603131]
W (0) : [-0.92733121]

Ideally, the weight of both the hidden layer and output layer should be 1.0 with
biases as 0.0, but due to precision errors, we get the above as the best parameters.

As seen in Figure 2, f(x) ≈ y for all test data and thus, C(W, b) is minimized to
0.0.

2.2 Learning y = x2

We first run the experiment using the same configuration as in y = x except two
changes:

• η = 0.0001
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Figure 3: Graphs for y = x2 data (without activation)

• batch size = 100

As expected, the above configuration is not able to learn the function y = x2.
This is verfied from Figure 3. We need to introduce non-linearity in the activation
functions.

We run the experiment on the same dataset using the new configuration:

• 1 Hidden Layer with 100 hidden units and following activation function:

h(x) =
4∑

i=1
(W (i) · x+ b(i))i

• Logistic Regression as the Output layer

• Cost C(W, b): MSE

• W and b initiallized randomly

• η = 0.0000001

• batch size = 30

• L1 and L2 regularizers as 0.0

As we see in Figure 4, adding the activation function helps us to learn the non-
linearity in the data. We notice that the current network configuration is probably
an overkill for learning y = x2 and we may end up overfitting. Figure 5 shows the
improvement (in fit) we achieve when we run the experiment again using L1 value
of 0.1.
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Figure 4: Graphs for y = x2 data (with activation)

Figure 5: Graphs for y = x2 data (with activation) and 0.1 L1
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Figure 6: ANN for learning sinx using different learning rates

3 Learning sinx with Varying Parameters

Using data sampled from sinx function, we perform experiments to see the impact
of different hyper-parameters on the learning task.[3] The default configuration of
our network is as follows:

• 1 Hidden Layer with 100 hidden units and tanh activation function.

• Logistic Regression as the Output layer

• Learning method: Standard Gradient Descent

• Cost C(W, b): MSE

• W and b initiallized randomly

• η = 0.1

• batch size = 100

• L1 and L2 regularizers as 0.0

3.1 Role of Learning Rate η

There is a lot of research on suitable value of learning rate. The learning rate η
indicates the step size in the search process. If η is too high, the gradient starts
diverging; if it is too low, it takes a long time to learn. A good rule of thumb is,
starting at 0.1 and then decrementing in factors of approximately 3. For eg., your
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Figure 7: ANN for learning sinx using different batch size

initial experiments will be with η as 0.1, 0.03, 0.01, 0.003, 0.001 and so on. We fix
η to the number which gives us the least validation error.

We compare results of η values 0.1, 0.01 and 0.001. As we see in Figure 6, η value
0.1 is able to learn the function much faster (less number of iterations) as compared
to η value of 0.01 and 0.001.

3.2 Role of batch size

Batch size and learning rate generally complement each other. batch size of 1 is
called as online learning. Basically, the neural network learns from each training
example. This is useful to ensure the descent doesn’t get stuck in local minima but
at the same time it is quite sensitive to noisy data. batch size equal to training data
is the standard gradient descent. Using a batch size between the two extremes
is the preferred to perform gradient descent. Consider you have 20000 training
examples. Using a batch size of 100 as opposed to the entire dataset speeds up
estimating the gradient by a factor of 200!

We compare results of batch size of 1, 10 and 100. As we see in Figure 7,
batch size of 1 (on-line learning) is able to learn the function much faster, but
the cost function has lots of ups and down as every training example updates the
gradient. This can have a lot of impact in real world applications where data con-
tains lots of noise as well.

Batch size of 100 on the other hand, considers lots of training examples for every
update making it much slower but stable.

An ideal value of batch size should be such that the cost function remains smooth
and at the same time learns the data at a good rate.
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Figure 8: ANN for learning sinx using different activation functions

3.3 Role of Activation Functions

We introduce activation functions to handle non-linearity. Three of the most com-
mon ones used are tanh, sigmoid and RectifiedLinearUnit(ReLUs).

tanh(a) = (ea−e−a)
(ea+e−a)

sigmoid(a) = 1
(1+e−a)

(ReLUs) : f(a) = max(0, a)

As explained in ”Efficient BackProp”[4] activation functions that are symmetric
around the origin are preferred because they tend to produce zero-mean inputs to
the next layer. In practice, tanh perform better than sigmoid. ReLUs are gen-
erally preferred over other nonlinearities since it has been found to speedup the
convergence of stochastic gradient descent compared to the sigmoid or tanh func-
tions. ReLUs can be implemented by simply thresholding a matrix of activations
at zero. [5]

Figure 8 captures the result of various activation functions. tanh, sigmoid and
ReLUs are able to learn the sinx data easily. A higher learning rate negatively
impacts ReLUs so we need to be careful when choosing our activation function.

3.4 Role of Hidden Units

This is dependent on the dataset. The more complicated input distribution will
require more hidden units (network capacity) to model it. Important thing to notice
is that as we increase the number of hidden units, the need to use L1/L2 regularizer
also increases. The additional capacity may overfit the training data giving poor test
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Figure 9: ANN for learning sinx trying different number of hiddent units

Figure 10: ANN for learning sinx using different parameter initializations

results. Also, adding more capacity naturally makes the process computationally
slower.

Figure 9 highlights the impact of increasing the hidden units on learning. 1 hidden
unit is not sufficient to handle the non-linearity of data sampled from sinx. Beyond
a particular point, increasing the number of hidden units will not have any positive
impact on the learning method. Even though we’re running the experiment on same
number of iterations, the time required per iteration increases as we increase the
number of hidden units.

3.5 Role of Parameter Initialization

This is a very important and well documented problem. When we create our neural
network, we have to initialize the weights and baises. It is possible to make the
learning hard because of our choice of initial weights. The simplest apporach for
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this is to avoid this is to initialize the weight parameters randomly using a Gaussian
distributions with mean 0 and standard deviation 1.

Since we want the activation function to operate in it’s linear regime (gradients are
largest), we want the weights to be small enough around the origin.

As mentioned in [Xavier10], a good practice is to initialize based on the activation
function used. For eg.

tanh(a) = uniform[−
√
6√

nin+nout
,

√
6√

nin+nout
]

sigmoid(a) = uniform[−4 ∗
√
6√

nin+nout
, 4 ∗

√
6√

nin+nout
]

In practice, it doesn’t much matter how you initialize the biases. We can continue to
initialize the baises randomly and let gradient descent learn the appropriate biases.

One important thing to note is that no matter how you initialize the parameters, you
may still end up with the same accuracy. What will differ is the number of epochs
required to reach there.

We run experiments using three weight initializing techniques:

• Same: All weight params are initialized to the same randomly selected value.

• Random: Weight params are randomly sampled from a Gaussian distribu-
tions with mean 0 and standard deviation 1.

• Squashed: Randomly distributed using the formula given above for tanh(a)

As seen in Figure 10, both the Random and Squashed technique perform pretty
well. If we initialize all weights to the same value, then all the neurons will follow
the same gradient, they will behave the same way as one another and will always
end up with the same weights in the end. Also, initialing with the same weight
baises your solution to particul set of weights i.e. you end up getting stuck in local
minima.

3.6 Role of Learning Methods

As seen before, The learning rate η is typically set experimentally, using a tuning
procedure in which the highest possible learning rate such that no divergence is
seen, and the convergence is also reasonably fast, is hand picked. Even after many
experiments, the learning rate chosen may be sub-optimal. Additonally, a fixed
learning rate cannot handle the shape of a typical multi-dimensional error function
which has lots of minima.
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Figure 11: ANN for learning sinx using different learning methods
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In the scenario where we have a fixed learning rate, the optimum value that learns
all parameters reasonably well would be the inverse Hessian. However, comput-
ing the inverse of the Hessian matrix is computationally intensive. Some adaptive
learning techniques provide a good approximation of the Hessian, thereby allowing
Stochastic Gradient Descent to exhibit fast convergence as well as a high success
rate.

Some of the adaptive learning methods are Momentun[6], Nestorov’s Accelerated
Gradient (NAG)[7], AdaGrad[8], AdaDelta[9], AdaSecant[10], RMSProp[11], etc.

We try to learn sinx using different adaptive methods for few number of epochs.
As seen in Figure 11, the adaptive learning methods perform better than the vanilla
Gradient Descent. While AdaGrad has the lowest test error earlier on, it saturates
(due to annealing effect) and stops learning. On the other hand, AdaDelta ends up
with the least test error after 1000 epochs learning considerably faster than the rest
of the methods.

4 Experimental Setup

4.1 DataSets

We run our experiments on the 20newsgroup data which is a standard dataset for
document classification. It is the biggest dataset that we’re running our experiments
on. The training data consists of 11,314 documents with total of 20 distinct classes.
We use TF-IDF representation of the text as features and limit the number to 20,000
features for our experiments. The test data consists of 7,532 documents. We have
also stripped the headers, footers and quotes of the data since they were overfitting
the model for the 20newsgroup dataset. By stripping these data specific items, we
ensure that our model can work on any dataset.

4.2 Architecture & Framework

The code is written in Theano[12]. Theano is a python library that lets us define,
optimize, and evaluate mathematical expressions involving multi-dimensional ar-
rays efficiently. Some of the features of using Theano are tight intengration with
numpy, transparent use of GPU, efficient differentiation, dynamic C code genera-
tion. [13]

We’re running the experiment using Deep Neural Nets with one hidden layer. The
hidden layer consists of 200 neurons and uses Rectified Linear Unit as the ac-
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Figure 12: ANN using 20newsgroup

tivation function. The output layer uses Logistic Regression with Negative Log
Likelihood as the loss function. The prediction is made using arg max over the
Softmax function. L1 regularizer co-efficient used is 0.0, while the L2 regularizer
co-efficient is inverse of the size of the training data.

4.3 Machine

We’re running the experiments on Amazon EC2 instances. The configuration of
the machine is: g2.2xlarge (26 ECUs, 8 vCPUs, 2.6 GHz, Intel Xeon E5-2670, 15
GiB memory, 1 x 60 GiB Storage Capacity)
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5 Results

5.1 Baselines

We start our experiments by getting baseline results using SVM and NaiveBayes.
We achieved 31.85% test error using NaiveBayes and 32.06% using SVM.

5.2 ANN

We run the experiment with ANN using standard gradient descent with a fixed
learning rate and gradient descent with adaptive learning technique (AdaGrad).

As shown in Figure 12, Adagrad learns much faster than standard Gradient De-
scent. By the end of 1000 epochs, we achieved 32.06% test error using standard
Gradient Descent and 15.5% test error using AdaGrad. Running them for much
longer, we were able to achieve 15.5% test error for both the methods, a significant
improvement over the baselines. As observed, AdaGrad was able to achieve the
lowest test error in just 330 epochs. Comparing this to SGD, which had a test error
of 62.25% in the same number of iterations.

6 Summary

From our experiments, we observe that deep neural nets give a significant per-
formance improvement over standard SVM and NaiveBayes. We understand the
impact of various hyper-parameters on the performance of our neural network and
document the results of tuning them individually.
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